2 research outputs found

    Load Balancer using Whale-Earthworm Optimization for Efficient Resource Scheduling in the IoT-Fog-Cloud Framework

    Get PDF
    Cloud-Fog environment is useful in offering optimized services to customers in their daily routine tasks. With the exponential usage of IoT devices, a huge scale of data is generated. Different service providers use optimization scheduling approaches to optimally allocate the scarce resources in the Fog computing environment to meet job deadlines. This study introduces the Whale-EarthWorm Optimization method (WEOA), a powerful hybrid optimization method for improving resource management in the Cloud-Fog environment. Striking a balance between exploration and exploitation of these approaches is difficult, if only Earthworm or Whale optimization methods are used. Earthworm technique can result in inefficiency due to its investigations and additional overhead, whereas Whale algorithm, may leave scope for improvement in finding the optimal solutions using its exploitation.  This research introduces an efficient task allocation method as a novel load balancer. It leverages an enhanced exploration phase inspired by the Earthworm algorithm and an improved exploitation phase inspired by the Whale algorithm to manage the optimization process. It shows a notable performance enhancement, with a 6% reduction in response time, a 2% decrease in cost, and a 2% improvement in makespan over EEOA. Furthermore, when compared to other approaches like h-DEWOA, CSDEO, CSPSO, and BLEMO, the proposed method achieves remarkable results, with response time reductions of up to 82%, cost reductions of up to 75%, and makespan improvements of up to 80%
    corecore